Inference With Non-Gaussian Ornstein-Uhlenbeck Processes for Stochastic Volatility∗

نویسندگان

  • J. E. Griffin
  • Gareth Roberts
چکیده

Continuous-time stochastic volatility models are becoming an increasingly popular way to describe moderate and high-frequency financial data. Recently, Barndorff-Nielsen and Shephard (2001a) proposed a class of models where the volatility behaves according to an Ornstein-Uhlenbeck process, driven by a positive Lévy process without Gaussian component. These models introduce discontinuities, or jumps, into the volatility process. They also consider superpositions of such processes and we extend that to the inclusion of a jump component in the returns. In addition, we allow for leverage effects and we introduce separate risk pricing for the volatility components. We design and implement practically relevant inference methods for such models, within the Bayesian paradigm. The algorithm is based on Markov chain Monte Carlo (MCMC) methods and we use a series representation of Lévy processes. MCMC methods for such models are complicated by the fact that parameter changes will often induce a change in the distribution of the representation of the process and the associated problem of overconditioning. We avoid this problem by dependent thinning methods. An application to stock price data shows the models perform very well, even in the face of data with rapid changes, especially if a superposition of processes with different risk premiums and a leverage effect is used. JEL classification: C11; C22; G12

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Indirect inference methods for stochastic volatility models based on non-Gaussian Ornstein-Uhlenbeck processes

This paper aims to develop new methods for statistical inference in a class of stochastic volatility models for financial data based on non-Gaussian Ornstein-Uhlenbeck (OU) processes. Our approach uses indirect inference methods: First, a quasi-likelihood for the actual data is estimated. This quasi-likelihood is based on an approximative Gaussian state space representation of the OUbased model...

متن کامل

Characteristic function estimation of Ornstein-Uhlenbeck-based stochastic volatility models

Continuous-time stochastic volatility models are becoming increasingly popular in finance because of their flexibility in accommodating most stylized facts of financial time series. However, their estimation is difficult because the likelihood function does not have a closed-form expression. In this paper we propose a characteristic function-based estimation method for non-Gaussian Ornstein-Uhl...

متن کامل

Bayesian inference with stochastic volatility models using continuous superpositions of non-Gaussian Ornstein-Uhlenbeck processes

This paper discusses Bayesian inference for stochastic volatility models based on continuous superpositions of Ornstein-Uhlenbeck processes. These processes represent an alternative to the previously considered discrete superpositions. An interesting class of continuous superpositions is defined by a Gamma mixing distribution which can define long memory processes. We develop efficient Markov c...

متن کامل

Inference in Infinite Superpositions of Non-Gaussian Ornstein–Uhlenbeck Processes Using Bayesian Nonparametic Methods

This paper describes a Bayesian nonparametric approach to volatility estimation. Volatility is assumed to follow a superposition of an infinite number of Ornstein–Uhlenbeck processes driven by a compound Poisson process with a parametric or nonparametric jump size distribution. This model allows a wide range of possible dependencies and marginal distributions for volatility. The properties of t...

متن کامل

Stochastic volatility of volatility and variance risk premia

This paper introduces a new class of stochastic volatility models which allows for stochastic volatility of volatility (SVV): Volatility modulated non–Gaussian Ornstein–Uhlenbeck (VMOU) processes. Various probabilistic properties of (integrated) VMOU processes are presented. Further we study the effect of the SVV on the leverage effect and on the presence of long memory. One of the key results ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003